1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
//! Helper test utils to test lattice implementation correctness.

use std::fmt::Debug;

use crate::{
    Atomize, IsBot, IsTop, Lattice, LatticeBimorphism, LatticeMorphism, LatticeOrd, Merge,
    NaiveLatticeOrd,
};

/// Helper which calls many other `check_*` functions in this module. See source code for which
/// functions are called.
pub fn check_all<T: Lattice + Clone + PartialEq + Debug + Default>(items: &[T]) {
    check_lattice_ord(items);
    check_partial_ord_properties(items);
    check_lattice_properties(items);
    check_lattice_is_bot(items);
    check_lattice_is_top(items);
    check_lattice_default_is_bot::<T>();
}

/// Check that the lattice's `PartialOrd` implementation agrees with the `NaiveLatticeOrd` partial
/// order derived from `Merge`.
pub fn check_lattice_ord<T: LatticeOrd + NaiveLatticeOrd + Debug>(items: &[T]) {
    // `NaiveLatticeOrd` is a better source of truth, as it is based on the `Merge` impl. But it
    // is inefficient. It also could be wrong if `Merge` doesn't properly return true/false
    // iff the merge changed things.
    for [a, b] in cartesian_power(items) {
        assert_eq!(a.naive_cmp(b), a.partial_cmp(b), "`{:?}`, `{:?}`", a, b);
    }
}

/// Checks `PartialOrd` and `PartialEq`'s reflexivity, symmetry, transitivity, and duality.
#[expect(
    clippy::eq_op,
    clippy::double_comparisons,
    reason = "testing comparison properties"
)]
pub fn check_partial_ord_properties<T: PartialOrd + PartialEq + Debug>(items: &[T]) {
    use std::cmp::Ordering::*;

    // PartialEq:
    // reflexive: a == a;
    for a in items {
        assert!(a == a, "Reflexivity: `{:?}` should equal itself.", a);
    }
    // symmetric: a == b implies b == a; and
    for [a, b] in cartesian_power(items) {
        assert_eq!(a == b, b == a, "`{:?}`, `{:?}`", a, b);
    }
    // transitive: a == b and b == c implies a == c.
    for [a, b, c] in cartesian_power(items) {
        if a == b && b == c {
            assert_eq!(a == b && b == c, a == c, "`{:?}`, `{:?}`, `{:?}`", a, b, c);
        }
    }

    // PartialOrd
    for [a, b] in cartesian_power(items) {
        // a == b if and only if partial_cmp(a, b) == Some(Equal).
        assert_eq!(
            a == b,
            a.partial_cmp(b) == Some(Equal),
            "`{:?}`, `{:?}`",
            a,
            b,
        );
        // a < b if and only if partial_cmp(a, b) == Some(Less)
        assert_eq!(
            a < b,
            a.partial_cmp(b) == Some(Less),
            "`{:?}`, `{:?}`",
            a,
            b,
        );
        // a > b if and only if partial_cmp(a, b) == Some(Greater)
        assert_eq!(
            a > b,
            a.partial_cmp(b) == Some(Greater),
            "`{:?}`, `{:?}`",
            a,
            b,
        );
        // a <= b if and only if a < b || a == b
        assert_eq!(a <= b, a < b || a == b, "`{:?}`, `{:?}`", a, b);
        // a >= b if and only if a > b || a == b
        assert_eq!(a >= b, a > b || a == b, "`{:?}`, `{:?}`", a, b);
        // PartialEq:
        // a != b if and only if !(a == b).
        // #[expect(clippy::nonminimal_bool, reason = "testing comparison properties")]
        {
            assert_eq!(a != b, !(a == b), "`{:?}`, `{:?}`", a, b);
        }
    }
    // transitivity: a < b and b < c implies a < c. The same must hold for both == and >.
    for [a, b, c] in cartesian_power(items) {
        if a < b && b < c {
            assert!(a < c, "`{:?}`, `{:?}`, `{:?}`", a, b, c);
        }
        if a == b && b == c {
            assert!(a == c, "`{:?}`, `{:?}`, `{:?}`", a, b, c);
        }
        if a > b && b > c {
            assert!(a > c, "`{:?}`, `{:?}`, `{:?}`", a, b, c);
        }
    }
    // duality: a < b if and only if b > a.
    for [a, b] in cartesian_power(items) {
        assert_eq!(a < b, b > a, "`{:?}`, `{:?}`", a, b);
    }
}

/// Check lattice associativity, commutativity, and idempotence.
pub fn check_lattice_properties<T: Merge<T> + Clone + PartialEq + Debug>(items: &[T]) {
    // Idempotency
    // x ∧ x = x
    for x in items {
        assert_eq!(
            Merge::merge_owned(x.clone(), x.clone()),
            x.clone(),
            "`{:?}`",
            x,
        );
    }

    // Commutativity
    // x ∧ y = y ∧ x
    for [x, y] in cartesian_power(items) {
        assert_eq!(
            Merge::merge_owned(x.clone(), y.clone()),
            Merge::merge_owned(y.clone(), x.clone()),
            "`{:?}`, `{:?}`",
            x,
            y,
        );
    }

    // Associativity
    // x ∧ (y ∧ z) = (x ∧ y) ∧ z
    for [x, y, z] in cartesian_power(items) {
        assert_eq!(
            Merge::merge_owned(x.clone(), Merge::merge_owned(y.clone(), z.clone())),
            Merge::merge_owned(Merge::merge_owned(x.clone(), y.clone()), z.clone()),
            "`{:?}`, `{:?}`, `{:?}`",
            x,
            y,
            z,
        );
    }
}

/// Checks that the item which is bot is less than (or equal to) all other items.
pub fn check_lattice_is_bot<T: IsBot + LatticeOrd + Debug>(items: &[T]) {
    let Some(bot) = items.iter().find(|&x| IsBot::is_bot(x)) else {
        return;
    };
    for x in items {
        assert!(bot <= x);
        assert_eq!(bot == x, x.is_bot(), "{:?}", x);
    }
}

/// Checks that the item which is top is greater than (or equal to) all other items.
pub fn check_lattice_is_top<T: IsTop + LatticeOrd + Debug>(items: &[T]) {
    let Some(top) = items.iter().find(|&x| IsTop::is_top(x)) else {
        return;
    };
    for x in items {
        assert!(x <= top);
        assert_eq!(top == x, x.is_top(), "{:?}", x);
    }
}

/// Asserts that [`IsBot`] is true for [`Default::default()`].
pub fn check_lattice_default_is_bot<T: IsBot + Default>() {
    assert!(T::is_bot(&T::default()));
}

/// Check that the atomized lattice points re-merge to form the same original lattice point, for each item in `items`.
pub fn check_atomize_each<
    T: Atomize + Merge<T::Atom> + LatticeOrd + IsBot + Default + Clone + Debug,
>(
    items: &[T],
) where
    T::Atom: Debug,
{
    for item in items {
        let mut reformed = T::default();
        let mut atoms = item.clone().atomize().peekable();
        assert_eq!(
            atoms.peek().is_none(),
            item.is_bot(),
            "`{:?}` atomize should return empty iterator ({}) if and only if item is bot ({}).",
            item,
            atoms.peek().is_none(),
            item.is_bot()
        );
        for atom in atoms {
            assert!(
                !atom.is_bot(),
                "`{:?}` atomize illegally returned a bottom atom `{:?}`.",
                item,
                atom,
            );
            reformed.merge(atom);
        }
        assert_eq!(item, &reformed, "`{:?}` atomize failed to reform", item);
    }
}

/// Checks that the [`LatticeMorphism`] is valid, i.e. that merge distributes over it.
pub fn check_lattice_morphism<LatIn, Func>(mut func: Func, items: &[LatIn])
where
    Func: LatticeMorphism<LatIn>,
    LatIn: Merge<LatIn> + Clone + PartialEq + Debug,
    Func::Output: Merge<Func::Output> + Clone + PartialEq + Debug,
{
    for [a, b] in cartesian_power(items) {
        assert_eq!(
            func.call(Merge::merge_owned(a.clone(), b.clone())),
            Merge::merge_owned(func.call(a.clone()), func.call(b.clone())),
            "Func not a morphism: `f(a ⊔ b) != f(a) ⊔ f(b)`
            \n`a = {:?}`, `b = {:?}`",
            a,
            b
        )
    }
}

/// Checks that the [`LatticeBimorphism`] is valid, i.e. that merge distributes over both arguments of it.
pub fn check_lattice_bimorphism<LatA, LatB, Func>(
    mut func: Func,
    items_a: &[LatA],
    items_b: &[LatB],
) where
    Func: LatticeBimorphism<LatA, LatB>,
    LatA: Merge<LatA> + Clone + PartialEq + Debug,
    LatB: Merge<LatB> + Clone + PartialEq + Debug,
    Func::Output: Merge<Func::Output> + Clone + PartialEq + Debug,
{
    // Morphism LHS, fixed RHS:
    for b in items_b {
        for [a, da] in cartesian_power(items_a) {
            assert_eq!(
                func.call(Merge::merge_owned(a.clone(), da.clone()), b.clone()),
                Merge::merge_owned(
                    func.call(a.clone(), b.clone()),
                    func.call(da.clone(), b.clone())
                ),
                "Left arg not a morphism: `f(a ⊔ da, b) != f(a, b) ⊔ f(da, b)`
                \n`a = {:?}`, `da = {:?}`, `b = {:?}`",
                a,
                da,
                b,
            );
        }
    }
    // Fixed LHS, morphism RHS:
    for a in items_a {
        for [b, db] in cartesian_power(items_b) {
            assert_eq!(
                func.call(a.clone(), Merge::merge_owned(b.clone(), db.clone())),
                Merge::merge_owned(
                    func.call(a.clone(), b.clone()),
                    func.call(a.clone(), db.clone())
                ),
                "Right arg not a morphism: `f(a, b ⊔ db) != f(a, b) ⊔ f(a, db)`
                \n`a = {:?}`, `b = {:?}`, `db = {:?}`",
                a,
                b,
                db,
            );
        }
    }
}

/// Returns an iterator of `N`-length arrays containing all permutations of `items` (with
/// replacement).
///
/// I.e. the `N`th cartesian power of `items`. I.e. the cartesian
/// product of `items` with itself `N` times.
pub fn cartesian_power<T, const N: usize>(
    items: &[T],
) -> impl ExactSizeIterator<Item = [&T; N]> + Clone {
    struct CartesianPower<'a, T, const N: usize> {
        items: &'a [T],
        iters: [std::iter::Peekable<std::slice::Iter<'a, T>>; N],
    }
    impl<'a, T, const N: usize> Iterator for CartesianPower<'a, T, N> {
        type Item = [&'a T; N];

        fn next(&mut self) -> Option<Self::Item> {
            if self.items.is_empty() {
                return None;
            }

            let mut go_next = true;
            let out = std::array::from_fn::<_, N, _>(|i| {
                let iter = &mut self.iters[i];
                let &item = iter.peek().unwrap();
                if go_next {
                    iter.next();
                    if iter.peek().is_none() {
                        // "Carry" the `go_next` to the next entry.
                        *iter = self.items.iter().peekable();
                    } else {
                        go_next = false;
                    }
                }
                item
            });
            if go_next {
                // This is the last element, after this return `None`.
                self.items = &[];
            };
            Some(out)
        }

        fn size_hint(&self) -> (usize, Option<usize>) {
            if self.items.is_empty() {
                return (0, Some(0));
            }
            let mut pow = 1;
            let mut passed = 0;
            for iter in self.iters.iter() {
                passed += pow * (self.items.len() - iter.len());
                pow *= self.items.len();
            }
            let size = pow - passed;
            (size, Some(size))
        }
    }
    impl<T, const N: usize> ExactSizeIterator for CartesianPower<'_, T, N> {}
    impl<T, const N: usize> Clone for CartesianPower<'_, T, N> {
        fn clone(&self) -> Self {
            Self {
                items: self.items,
                iters: self.iters.clone(),
            }
        }
    }
    let iters = std::array::from_fn::<_, N, _>(|_| items.iter().peekable());
    CartesianPower { items, iters }
}

#[test]
fn test_cartesian_power() {
    let items = &[1, 2, 3];
    let mut iter = cartesian_power(items);
    let mut len = 27;
    assert_eq!(len, iter.len());
    for x in items {
        for y in items {
            for z in items {
                len -= 1;
                assert_eq!(Some([z, y, x]), iter.next());
                assert_eq!(len, iter.len());
            }
        }
    }
}

#[test]
fn test_cartesian_power_zero() {
    let mut iter = cartesian_power::<_, 0>(&[0, 1, 2]);
    assert_eq!(1, iter.len());
    assert_eq!(Some([]), iter.next());
    assert_eq!(None, iter.next());
}

#[test]
fn test_cartesian_power_empty() {
    let mut iter = cartesian_power::<_, 4>(&[] as &[usize]);
    assert_eq!(0, iter.len());
    assert_eq!(None, iter.next());
}