1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
//! Module containing the [`BinaryTrust`] applications.
use crate::{Addition, Multiplication, One, Zero};
#[derive(PartialEq, Debug)]
// #[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
/// Implementation of the Binary Trust semiring ({0,1}, OR, AND, False, True)
pub struct BinaryTrust(bool);
impl BinaryTrust {
/// Create a new 'Binary Trust' semiring instance.
pub fn new() -> Self {
Self(true)
}
}
impl Default for BinaryTrust {
fn default() -> Self {
Self::new()
}
}
/// Implementation of the addition trait for the Binary Trust semiring.
impl Addition<BinaryTrust> for BinaryTrust {
/// OR operation
fn add(&mut self, other: BinaryTrust) {
self.0 = self.0 || other.0;
}
}
/// Implementation of the multiplication trait for the Binary Trust semiring.
impl Multiplication<BinaryTrust> for BinaryTrust {
/// AND operation
fn mul(&mut self, other: BinaryTrust) {
self.0 = self.0 && other.0;
}
}
/// Implementation of Identity for addition.
impl Zero<bool> for BinaryTrust {
/// False is the identity element for addition operation.
fn zero(&self) -> bool {
false
}
}
/// Implementation of Identity for multiplication.
impl One<bool> for BinaryTrust {
/// True is the identity element for multiplication operation.
fn one(&self) -> bool {
true
}
}
/// Implementation of the Multiplicity semiring (N, +, *, 0, 1)
pub struct Multiplicity(u32);
impl Multiplicity {
/// Create a new instance of Multiplicity.
pub fn new(value: u32) -> Self {
Multiplicity(value)
}
}
/// Implementation of the addition trait for Multiplicity semiring.
impl Addition<Multiplicity> for Multiplicity {
/// + operation
fn add(&mut self, other: Multiplicity) {
self.0 = self.0.checked_add(other.0).unwrap();
}
}
/// Implementation of the multiplication trait for Multiplicity semiring.
impl Multiplication<Multiplicity> for Multiplicity {
/// * operation
fn mul(&mut self, other: Multiplicity) {
self.0 = self.0.checked_mul(other.0).unwrap();
}
}
/// Implementation of Identity for addition.
impl Zero<u32> for Multiplicity {
/// 0 is the zero element of the semiring.
fn zero(&self) -> u32 {
0
}
}
/// Implementation of Identity for multiplication.
impl One<u32> for Multiplicity {
/// 1 is the one element of the semiring.
fn one(&self) -> u32 {
1
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
/// Implementation for N U Inf
pub enum U32WithInfinity {
/// Infinity
Infinity,
/// Natural numbers
Finite(u32),
}
/// Implementation of the Cost/Tropical semiring (N U Inf, min, +, inf, 0)
pub struct Cost(U32WithInfinity);
impl Cost {
/// Create a new instance of Cost.
pub fn new(value: U32WithInfinity) -> Self {
Cost(value)
}
}
/// Implementation of the addition trait for Cost semiring.
impl Addition<Cost> for Cost {
/// Min operation
fn add(&mut self, other: Cost) {
self.0 = match (self.0, other.0) {
(U32WithInfinity::Infinity, x) | (x, U32WithInfinity::Infinity) => x,
(U32WithInfinity::Finite(a), U32WithInfinity::Finite(b)) => {
U32WithInfinity::Finite(a.min(b))
}
};
}
}
/// Implementation of the multiplication trait for Cost semiring.
impl Multiplication<Cost> for Cost {
/// + operation
fn mul(&mut self, other: Cost) {
self.0 = match (self.0, other.0) {
(U32WithInfinity::Infinity, _) | (_, U32WithInfinity::Infinity) => {
U32WithInfinity::Infinity
}
(U32WithInfinity::Finite(a), U32WithInfinity::Finite(b)) => {
U32WithInfinity::Finite(a + b)
}
};
}
}
/// Implementation of Identity for addition.
impl Zero<U32WithInfinity> for Cost {
/// Infinity is the identity element for addition operation.
fn zero(&self) -> U32WithInfinity {
U32WithInfinity::Infinity
}
}
/// Implementation of Identity for multiplication.
impl One<U32WithInfinity> for Cost {
/// 0 is the one element of the semiring.
fn one(&self) -> U32WithInfinity {
U32WithInfinity::Finite(0)
}
}
/// Implementation of the confidence Score semiring ([0, 1], max, *, 0, 1)
pub struct ConfidenceScore(f64);
impl ConfidenceScore {
/// Create a new instance of ConfidenceScore with the given value.
pub fn new(value: f64) -> Self {
// Ensure the value is within the range [0, 1]
assert!((0.0..=1.0).contains(&value));
ConfidenceScore(value)
}
}
/// Implementation of the addition trait for ConfidenceScore semiring.
impl Addition<ConfidenceScore> for ConfidenceScore {
/// Maximum is the addition operation for ConfidenceScore semiring.
fn add(&mut self, other: ConfidenceScore) {
self.0 = f64::max(self.0, other.0);
}
}
/// Implementation of the multiplication trait for ConfidenceScore semiring.
impl Multiplication<ConfidenceScore> for ConfidenceScore {
/// Multiplication is the multiplication operation for ConfidenceScore semiring.
fn mul(&mut self, other: ConfidenceScore) {
self.0 *= other.0;
}
}
/// Implementation of Identity for addition.
impl Zero<f64> for ConfidenceScore {
/// 0 is the zero element of the semiring.
fn zero(&self) -> f64 {
0.0
}
}
/// Implementation of Identity for multiplication.
impl One<f64> for ConfidenceScore {
/// 1 is the one element of the semiring.
fn one(&self) -> f64 {
1.0
}
}
/// Implementation of Fuzzy Logic semiring ([0, 1], max, min, 0, 1).
pub struct FuzzyLogic(f64);
impl FuzzyLogic {
/// Create a new instance of FuzzyLogic with the given value.
pub fn new(value: f64) -> Self {
// Ensure the value is within the range [0, 1]
assert!((0.0..=1.0).contains(&value));
FuzzyLogic(value)
}
}
/// Implementation of the addition trait for FuzzyLogic semiring.
impl Addition<FuzzyLogic> for FuzzyLogic {
/// Maximum is the addition operation for FuzzyLogic semiring.
fn add(&mut self, other: FuzzyLogic) {
self.0 = f64::max(self.0, other.0);
}
}
/// Implementation of the multiplication trait for FuzzyLogic semiring.
impl Multiplication<FuzzyLogic> for FuzzyLogic {
/// Minimum is the multiplication operation for FuzzyLogic semiring.
fn mul(&mut self, other: FuzzyLogic) {
self.0 = f64::min(self.0, other.0);
}
}
/// Implementation of Identity for addition.
impl Zero<f64> for FuzzyLogic {
/// 0 is the zero element of the semiring.
fn zero(&self) -> f64 {
0.0
}
}
/// Implementation of Identity for multiplication.
impl One<f64> for FuzzyLogic {
/// 1 is the one element of the semiring.
fn one(&self) -> f64 {
1.0
}
}
#[cfg(test)]
mod test {
use super::*;
// Test for BinaryTrust ({0,1}, OR, AND, False, True)
#[test]
fn test_binary_trust() {
let mut binary_trust = BinaryTrust::new();
// Test addition (OR)
binary_trust.add(BinaryTrust(true));
assert!(binary_trust.0);
binary_trust = BinaryTrust::new();
binary_trust.add(BinaryTrust(false));
assert!(binary_trust.0);
// Test multiplication (AND)
binary_trust = BinaryTrust::new();
binary_trust.mul(BinaryTrust(true));
assert!(binary_trust.0);
binary_trust = BinaryTrust::new();
binary_trust.mul(BinaryTrust(false));
assert!(!binary_trust.0);
// Test identity element for addition (False)
assert!(!BinaryTrust(false).zero());
// Test identity element for multiplication (True)
assert!(BinaryTrust(true).one());
}
// Test for Multiplicity (N, +, *, 0, 1)
#[test]
fn test_multiplicity() {
let mut multiplicity = Multiplicity::new(5);
// Test addition (+)
multiplicity.add(Multiplicity(10));
assert_eq!(multiplicity.0, 15);
multiplicity = Multiplicity::new(5);
multiplicity.add(Multiplicity(0));
assert_eq!(multiplicity.0, 5);
// Test multiplication (*)
multiplicity = Multiplicity::new(5);
multiplicity.mul(Multiplicity(10));
assert_eq!(multiplicity.0, 50);
multiplicity = Multiplicity::new(10);
multiplicity.mul(Multiplicity(5));
assert_eq!(multiplicity.0, 50);
multiplicity = Multiplicity::new(5);
multiplicity.mul(Multiplicity(0));
assert_eq!(multiplicity.0, 0);
// Test identity element for addition (0)
assert_eq!(multiplicity.zero(), 0);
// Test identity element for multiplication (1)
assert_eq!(multiplicity.one(), 1);
}
// Test for Cost/Tropical semiring (N U Inf, min, +, inf, 0)
#[test]
fn test_cost() {
let mut cost = Cost::new(U32WithInfinity::Finite(5));
// Test addition (min)
cost.add(Cost::new(U32WithInfinity::Finite(10)));
assert_eq!(cost.0, U32WithInfinity::Finite(5));
cost = Cost::new(U32WithInfinity::Finite(5));
cost.add(Cost::new(U32WithInfinity::Infinity));
assert_eq!(cost.0, U32WithInfinity::Finite(5));
cost = Cost::new(U32WithInfinity::Infinity);
cost.add(Cost::new(U32WithInfinity::Finite(5)));
assert_eq!(cost.0, U32WithInfinity::Finite(5));
cost = Cost::new(U32WithInfinity::Infinity);
cost.add(Cost::new(U32WithInfinity::Infinity));
assert_eq!(cost.0, U32WithInfinity::Infinity);
// Test multiplication (+)
cost = Cost::new(U32WithInfinity::Finite(5));
cost.mul(Cost::new(U32WithInfinity::Finite(10)));
assert_eq!(cost.0, U32WithInfinity::Finite(15));
cost = Cost::new(U32WithInfinity::Finite(5));
cost.mul(Cost::new(U32WithInfinity::Infinity));
assert_eq!(cost.0, U32WithInfinity::Infinity);
cost = Cost::new(U32WithInfinity::Infinity);
cost.mul(Cost::new(U32WithInfinity::Finite(5)));
assert_eq!(cost.0, U32WithInfinity::Infinity);
// Test identity element for addition (Infinity)
assert_eq!(cost.zero(), U32WithInfinity::Infinity);
// Test identity element for multiplication (0)
assert_eq!(cost.one(), U32WithInfinity::Finite(0));
}
// Test for Confidence Score ([0, 1], max, *, 0, 1)
#[test]
fn test_confidence_score() {
let mut confidence_score = ConfidenceScore::new(0.5);
// Test addition (max)
confidence_score.add(ConfidenceScore::new(0.6));
assert_eq!(confidence_score.0, 0.6);
confidence_score = ConfidenceScore::new(0.5);
confidence_score.add(ConfidenceScore::new(0.4));
assert_eq!(confidence_score.0, 0.5);
// Test multiplication (*)
confidence_score = ConfidenceScore::new(0.5);
confidence_score.mul(ConfidenceScore::new(0.6));
assert_eq!(confidence_score.0, 0.3);
confidence_score = ConfidenceScore::new(0.5);
confidence_score.mul(ConfidenceScore::new(0.4));
assert_eq!(confidence_score.0, 0.2);
// Test identity element for addition (0)
assert_eq!(confidence_score.zero(), 0.0);
// Test identity element for multiplication (1)
assert_eq!(confidence_score.one(), 1.0);
}
// Test for Fuzzy Logic ([0, 1], max, min, 0, 1).
#[test]
fn test_fuzzy_logic() {
let mut fuzzy_logic = FuzzyLogic::new(0.5);
// Test addition (max)
fuzzy_logic.add(FuzzyLogic::new(0.6));
assert_eq!(fuzzy_logic.0, 0.6);
fuzzy_logic = FuzzyLogic::new(0.5);
fuzzy_logic.add(FuzzyLogic::new(0.4));
assert_eq!(fuzzy_logic.0, 0.5);
// Test multiplication (min)
fuzzy_logic = FuzzyLogic::new(0.5);
fuzzy_logic.mul(FuzzyLogic::new(0.6));
assert_eq!(fuzzy_logic.0, 0.5);
fuzzy_logic = FuzzyLogic::new(0.5);
fuzzy_logic.mul(FuzzyLogic::new(0.4));
assert_eq!(fuzzy_logic.0, 0.4);
// Test identity element for addition (0)
assert_eq!(fuzzy_logic.zero(), 0.0);
// Test identity element for multiplication (1)
assert_eq!(fuzzy_logic.one(), 1.0);
}
}