1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
//! Module for the [`Hydroflow`] struct and helper items.

use std::any::Any;
use std::borrow::Cow;
use std::cell::Cell;
use std::collections::VecDeque;
use std::future::Future;
use std::marker::PhantomData;

use hydroflow_lang::diagnostic::{Diagnostic, SerdeSpan};
use hydroflow_lang::graph::HydroflowGraph;
use instant::Instant;
use ref_cast::RefCast;
use smallvec::SmallVec;
use tokio::sync::mpsc::{self, UnboundedReceiver};

use super::context::Context;
use super::handoff::handoff_list::PortList;
use super::handoff::{Handoff, HandoffMeta, TeeingHandoff};
use super::port::{RecvCtx, RecvPort, SendCtx, SendPort, RECV, SEND};
use super::reactor::Reactor;
use super::state::StateHandle;
use super::subgraph::Subgraph;
use super::{HandoffId, SubgraphId};
use crate::Never;

/// A Hydroflow graph. Owns, schedules, and runs the compiled subgraphs.
pub struct Hydroflow<'a> {
    pub(super) subgraphs: Vec<SubgraphData<'a>>,
    pub(super) context: Context,

    handoffs: Vec<HandoffData>,

    /// TODO(mingwei): separate scheduler into its own struct/trait?
    /// Index is stratum, value is FIFO queue for that stratum.
    stratum_queues: Vec<VecDeque<SubgraphId>>,
    /// Receive events, if second arg indicates if it is an external "important" event (true).
    event_queue_recv: UnboundedReceiver<(SubgraphId, bool)>,
    /// If external events or data can justify starting the next tick.
    can_start_tick: bool,
    /// If the events have been received for this tick.
    events_received_tick: bool,

    /// See [`Self::meta_graph()`].
    meta_graph: Option<HydroflowGraph>,
    /// See [`Self::diagnostics()`].
    diagnostics: Option<Vec<Diagnostic<SerdeSpan>>>,
}
impl<'a> Default for Hydroflow<'a> {
    fn default() -> Self {
        let stratum_queues = vec![Default::default()]; // Always initialize stratum #0.
        let (event_queue_send, event_queue_recv) = mpsc::unbounded_channel();
        let context = Context {
            states: Vec::new(),

            event_queue_send,

            current_stratum: 0,
            current_tick: 0,

            current_tick_start: Instant::now(),
            subgraph_last_tick_run_in: None,

            subgraph_id: SubgraphId(0),

            tasks_to_spawn: Vec::new(),
            task_join_handles: Vec::new(),
        };
        Self {
            subgraphs: Vec::new(),
            context,
            handoffs: Vec::new(),

            stratum_queues,
            event_queue_recv,
            can_start_tick: false,
            events_received_tick: false,

            meta_graph: None,
            diagnostics: None,
        }
    }
}

/// Methods for [`TeeingHandoff`] teeing and dropping.
impl<'a> Hydroflow<'a> {
    /// Tees a [`TeeingHandoff`].
    pub fn teeing_handoff_tee<T>(
        &mut self,
        tee_parent_port: &RecvPort<TeeingHandoff<T>>,
    ) -> RecvPort<TeeingHandoff<T>>
    where
        T: Clone,
    {
        // Handoff ID of new tee output.
        let new_hoff_id = HandoffId(self.handoffs.len());

        // If we're teeing from a child make sure to find root.
        let tee_root = self.handoffs[tee_parent_port.handoff_id.0].pred_handoffs[0];

        // Set up teeing metadata.
        // Go to `tee_root`'s successors and insert self (the new tee output).
        let tee_root_data = &mut self.handoffs[tee_root.0];
        tee_root_data.succ_handoffs.push(new_hoff_id);

        // Add our new handoff id into the subgraph data if the send `tee_root` has already been
        // used to add a subgraph.
        assert!(
            tee_root_data.preds.len() <= 1,
            "Tee send side should only have one sender (or none set yet)."
        );
        if let Some(&pred_sg_id) = tee_root_data.preds.first() {
            self.subgraphs[pred_sg_id.0].succs.push(new_hoff_id);
        }

        // Insert new handoff output.
        let teeing_handoff = tee_root_data
            .handoff
            .any_ref()
            .downcast_ref::<TeeingHandoff<T>>()
            .unwrap();
        let new_handoff = teeing_handoff.tee();
        let new_name = Cow::Owned(format!("{} tee {:?}", tee_root_data.name, new_hoff_id));
        let mut new_handoff_data = HandoffData::new(new_name, new_handoff, new_hoff_id);
        // Set self's predecessor as `tee_root`.
        new_handoff_data.pred_handoffs = vec![tee_root];
        self.handoffs.push(new_handoff_data);

        let output_port = RecvPort {
            handoff_id: new_hoff_id,
            _marker: PhantomData,
        };
        output_port
    }

    /// Marks an output of a [`TeeingHandoff`] as dropped so that no more data will be sent to it.
    ///
    /// It is recommended to not not use this method and instead simply avoid teeing a
    /// [`TeeingHandoff`] when it is not needed.
    pub fn teeing_handoff_drop<T>(&mut self, tee_port: RecvPort<TeeingHandoff<T>>)
    where
        T: Clone,
    {
        let data = &self.handoffs[tee_port.handoff_id.0];
        let teeing_handoff = data
            .handoff
            .any_ref()
            .downcast_ref::<TeeingHandoff<T>>()
            .unwrap();
        teeing_handoff.drop();

        let tee_root = data.pred_handoffs[0];
        let tee_root_data = &mut self.handoffs[tee_root.0];
        // Remove this output from the send succ handoff list.
        tee_root_data
            .succ_handoffs
            .retain(|&succ_hoff| succ_hoff != tee_port.handoff_id);
        // Remove from subgraph successors if send port was already connected.
        assert!(
            tee_root_data.preds.len() <= 1,
            "Tee send side should only have one sender (or none set yet)."
        );
        if let Some(&pred_sg_id) = tee_root_data.preds.first() {
            self.subgraphs[pred_sg_id.0]
                .succs
                .retain(|&succ_hoff| succ_hoff != tee_port.handoff_id);
        }
    }
}

impl<'a> Hydroflow<'a> {
    /// Create a new empty Hydroflow graph.
    pub fn new() -> Self {
        Default::default()
    }

    /// Assign the `HydroflowGraph` via JSON string.
    #[doc(hidden)]
    pub fn __assign_meta_graph(&mut self, meta_graph_json: &str) {
        let mut meta_graph: HydroflowGraph =
            serde_json::from_str(meta_graph_json).expect("Failed to deserialize graph.");

        let mut op_inst_diagnostics = Vec::new();
        meta_graph.insert_node_op_insts_all(&mut op_inst_diagnostics);
        assert!(op_inst_diagnostics.is_empty());

        assert!(self.meta_graph.replace(meta_graph).is_none());
    }
    /// Assign the diagnostics via JSON string.
    #[doc(hidden)]
    pub fn __assign_diagnostics(&mut self, diagnostics_json: &'static str) {
        let diagnostics: Vec<Diagnostic<SerdeSpan>> =
            serde_json::from_str(diagnostics_json).expect("Failed to deserialize diagnostics.");

        assert!(self.diagnostics.replace(diagnostics).is_none());
    }

    /// Return a handle to the meta `HydroflowGraph` if set. The `HydroflowGraph is a
    /// representation of all the operators, subgraphs, and handoffs in this `Hydroflow` instance.
    /// Will only be set if this graph was constructed using a surface syntax macro.
    pub fn meta_graph(&self) -> Option<&HydroflowGraph> {
        self.meta_graph.as_ref()
    }

    /// Returns any diagnostics generated by the surface syntax macro. Each diagnostic is a pair of
    /// (1) a `Diagnostic` with span info reset and (2) the `ToString` version of the diagnostic
    /// with original span info.
    /// Will only be set if this graph was constructed using a surface syntax macro.
    pub fn diagnostics(&self) -> Option<&[Diagnostic<SerdeSpan>]> {
        self.diagnostics.as_deref()
    }

    /// Returns a reactor for externally scheduling subgraphs, possibly from another thread.
    /// Reactor events are considered to be external events.
    pub fn reactor(&self) -> Reactor {
        Reactor::new(self.context.event_queue_send.clone())
    }

    /// Gets the current tick (local time) count.
    pub fn current_tick(&self) -> usize {
        self.context.current_tick
    }

    /// Gets the current stratum nubmer.
    pub fn current_stratum(&self) -> usize {
        self.context.current_stratum
    }

    /// Runs the dataflow until the next tick begins.
    /// Returns true if any work was done.
    #[tracing::instrument(level = "trace", skip(self), ret)]
    pub fn run_tick(&mut self) -> bool {
        let mut work_done = false;
        // While work is immediately available *on the current tick*.
        while self.next_stratum(true) {
            work_done = true;
            // Do any work.
            self.run_stratum();
        }
        work_done
    }

    /// Runs the dataflow until no more (externally-triggered) work is immediately available.
    /// Runs at least one tick of dataflow, even if no external events have been received.
    /// If the dataflow contains loops this method may run forever.
    /// Returns true if any work was done.
    #[tracing::instrument(level = "trace", skip(self), ret)]
    pub fn run_available(&mut self) -> bool {
        let mut work_done = false;
        // While work is immediately available.
        while self.next_stratum(false) {
            work_done = true;
            // Do any work.
            self.run_stratum();
        }
        work_done
    }

    /// Runs the dataflow until no more (externally-triggered) work is immediately available.
    /// Runs at least one tick of dataflow, even if no external events have been received.
    /// If the dataflow contains loops this method may run forever.
    /// Returns true if any work was done.
    /// Yields repeatedly to allow external events to happen.
    #[tracing::instrument(level = "trace", skip(self), ret)]
    pub async fn run_available_async(&mut self) -> bool {
        let mut work_done = false;
        // While work is immediately available.
        while self.next_stratum(false) {
            work_done = true;
            // Do any work.
            self.run_stratum();

            // Yield between each stratum to receive more events.
            // TODO(mingwei): really only need to yield at start of ticks though.
            tokio::task::yield_now().await;
        }
        work_done
    }

    /// Runs the current stratum of the dataflow until no more local work is available (does not receive events).
    /// Returns true if any work was done.
    #[tracing::instrument(level = "trace", skip(self), fields(tick = self.context.current_tick, stratum = self.context.current_stratum), ret)]
    pub fn run_stratum(&mut self) -> bool {
        let current_tick = self.context.current_tick;

        let mut work_done = false;

        while let Some(sg_id) = self.stratum_queues[self.context.current_stratum].pop_front() {
            work_done = true;
            {
                let sg_data = &mut self.subgraphs[sg_id.0];
                // This must be true for the subgraph to be enqueued.
                assert!(sg_data.is_scheduled.take());
                tracing::trace!(
                    sg_id = sg_id.0,
                    sg_name = &*sg_data.name,
                    "Running subgraph."
                );

                self.context.subgraph_id = sg_id;
                self.context.subgraph_last_tick_run_in = sg_data.last_tick_run_in;
                sg_data.subgraph.run(&mut self.context, &mut self.handoffs);
                sg_data.last_tick_run_in = Some(current_tick);
            }

            let sg_data = &self.subgraphs[sg_id.0];
            for &handoff_id in sg_data.succs.iter() {
                let handoff = &self.handoffs[handoff_id.0];
                if !handoff.handoff.is_bottom() {
                    for &succ_id in handoff.succs.iter() {
                        let succ_sg_data = &self.subgraphs[succ_id.0];
                        // If we have sent data to the next tick, then we can start the next tick.
                        if succ_sg_data.stratum < self.context.current_stratum && !sg_data.is_lazy {
                            self.can_start_tick = true;
                        }
                        // Add subgraph to stratum queue if it is not already scheduled.
                        if !succ_sg_data.is_scheduled.replace(true) {
                            self.stratum_queues[succ_sg_data.stratum].push_back(succ_id);
                        }
                    }
                }
            }
        }
        work_done
    }

    /// Go to the next stratum which has work available, possibly the current stratum.
    /// Return true if more work is available, otherwise false if no work is immediately
    /// available on any strata.
    ///
    /// This will receive external events when at the start of a tick.
    ///
    /// If `current_tick_only` is set to `true`, will only return `true` if work is immediately
    /// available on the *current tick*.
    ///
    /// If this returns false then the graph will be at the start of a tick (at stratum 0, can
    /// receive more external events).
    #[tracing::instrument(level = "trace", skip(self), ret)]
    pub fn next_stratum(&mut self, current_tick_only: bool) -> bool {
        tracing::trace!(
            events_received_tick = self.events_received_tick,
            can_start_tick = self.can_start_tick,
            "Starting `next_stratum` call.",
        );

        if 0 == self.context.current_stratum {
            // Starting the tick, reset this to `false`.
            tracing::trace!("Starting tick, setting `can_start_tick = false`.");
            self.can_start_tick = false;
            self.context.current_tick_start = Instant::now();

            // Ensure external events are received before running the tick.
            if !self.events_received_tick {
                // Add any external jobs to ready queue.
                self.try_recv_events();
            }
        }

        // The stratum we will stop searching at, i.e. made a full loop around.
        let mut end_stratum = self.context.current_stratum;

        loop {
            tracing::trace!(
                tick = self.context.current_tick,
                stratum = self.context.current_stratum,
                "Looking for work on stratum."
            );

            // If current stratum has work, return true.
            if !self.stratum_queues[self.context.current_stratum].is_empty() {
                tracing::trace!(
                    tick = self.context.current_tick,
                    stratum = self.context.current_stratum,
                    "Work found on stratum."
                );
                return true;
            }

            // Increment stratum counter.
            self.context.current_stratum += 1;
            if self.context.current_stratum >= self.stratum_queues.len() {
                tracing::trace!(
                    can_start_tick = self.can_start_tick,
                    "End of tick {}, starting tick {}.",
                    self.context.current_tick,
                    self.context.current_tick + 1,
                );

                self.context.current_stratum = 0;
                self.context.current_tick += 1;
                self.events_received_tick = false;

                if current_tick_only {
                    tracing::trace!(
                        "`current_tick_only` is `true`, returning `false` before receiving events."
                    );
                    return false;
                } else {
                    self.try_recv_events();
                    if std::mem::replace(&mut self.can_start_tick, false) {
                        tracing::trace!(
                            tick = self.context.current_tick,
                            "`can_start_tick` is `true`, continuing."
                        );
                        // Do a full loop more to find where events have been added.
                        end_stratum = 0;
                        continue;
                    } else {
                        tracing::trace!(
                            "`can_start_tick` is `false`, re-setting `events_received_tick = false`, returning `false`."
                        );
                        self.events_received_tick = false;
                        return false;
                    }
                }
            }

            // After incrementing, exit if we made a full loop around the strata.
            if end_stratum == self.context.current_stratum {
                tracing::trace!("Made full loop around stratum, re-setting `current_stratum = 0`, returning `false`.");
                // Note: if current stratum had work, the very first loop iteration would've
                // returned true. Therefore we can return false without checking.
                // Also means nothing was done so we can reset the stratum to zero and wait for
                // events.
                self.events_received_tick = false;
                self.context.current_stratum = 0;
                return false;
            }
        }
    }

    /// Runs the dataflow graph forever.
    ///
    /// TODO(mingwei): Currently blocks forever, no notion of "completion."
    #[tracing::instrument(level = "trace", skip(self), ret)]
    pub fn run(&mut self) -> Option<Never> {
        loop {
            self.run_tick();
        }
    }

    /// Runs the dataflow graph forever.
    ///
    /// TODO(mingwei): Currently blocks forever, no notion of "completion."
    #[tracing::instrument(level = "trace", skip(self), ret)]
    pub async fn run_async(&mut self) -> Option<Never> {
        self.context.spawn_tasks();
        loop {
            // Run any work which is immediately available.
            self.run_available_async().await;
            // When no work is available yield until more events occur.
            self.recv_events_async().await;
        }
    }

    /// Enqueues subgraphs triggered by events without blocking.
    ///
    /// Returns the number of subgraphs enqueued, and if any were external.
    #[tracing::instrument(level = "trace", skip(self), fields(events_received_tick = self.events_received_tick), ret)]
    pub fn try_recv_events(&mut self) -> usize {
        let mut enqueued_count = 0;
        while let Ok((sg_id, is_external)) = self.event_queue_recv.try_recv() {
            let sg_data = &self.subgraphs[sg_id.0];
            tracing::trace!(
                sg_id = sg_id.0,
                is_external = is_external,
                sg_stratum = sg_data.stratum,
                "Event received."
            );
            if !sg_data.is_scheduled.replace(true) {
                self.stratum_queues[sg_data.stratum].push_back(sg_id);
                enqueued_count += 1;
            }
            if is_external {
                // Next tick is triggered if we are at the start of the next tick (`!self.events_receved_tick`).
                // Or if the stratum is in the next tick.
                if !self.events_received_tick || sg_data.stratum < self.context.current_stratum {
                    tracing::trace!(
                        current_stratum = self.context.current_stratum,
                        sg_stratum = sg_data.stratum,
                        "External event, setting `can_start_tick = true`."
                    );
                    self.can_start_tick = true;
                }
            }
        }
        self.events_received_tick = true;

        enqueued_count
    }

    /// Enqueues subgraphs triggered by external events, blocking until at
    /// least one subgraph is scheduled **from an external event**.
    #[tracing::instrument(level = "trace", skip(self), fields(events_received_tick = self.events_received_tick), ret)]
    pub fn recv_events(&mut self) -> Option<usize> {
        let mut count = 0;
        loop {
            let (sg_id, is_external) = self.event_queue_recv.blocking_recv()?;
            let sg_data = &self.subgraphs[sg_id.0];
            tracing::trace!(
                sg_id = sg_id.0,
                is_external = is_external,
                sg_stratum = sg_data.stratum,
                "Event received."
            );
            if !sg_data.is_scheduled.replace(true) {
                self.stratum_queues[sg_data.stratum].push_back(sg_id);
                count += 1;
            }
            if is_external {
                // Next tick is triggered if we are at the start of the next tick (`!self.events_receved_tick`).
                // Or if the stratum is in the next tick.
                if !self.events_received_tick || sg_data.stratum < self.context.current_stratum {
                    tracing::trace!(
                        current_stratum = self.context.current_stratum,
                        sg_stratum = sg_data.stratum,
                        "External event, setting `can_start_tick = true`."
                    );
                    self.can_start_tick = true;
                }
                break;
            }
        }
        self.events_received_tick = true;

        // Enqueue any other immediate events.
        let extra_count = self.try_recv_events();
        Some(count + extra_count)
    }

    /// Enqueues subgraphs triggered by external events asynchronously, waiting until at least one
    /// subgraph is scheduled **from an external event**. Returns the number of subgraphs enqueued,
    /// which may be zero if an external event scheduled an already-scheduled subgraph.
    ///
    /// Returns `None` if the event queue is closed, but that should not happen normally.
    #[tracing::instrument(level = "trace", skip(self), fields(events_received_tick = self.events_received_tick), ret)]
    pub async fn recv_events_async(&mut self) -> Option<usize> {
        let mut count = 0;
        loop {
            tracing::trace!("Awaiting events (`event_queue_recv`).");
            let (sg_id, is_external) = self.event_queue_recv.recv().await?;
            let sg_data = &self.subgraphs[sg_id.0];
            tracing::trace!(
                sg_id = sg_id.0,
                is_external = is_external,
                sg_stratum = sg_data.stratum,
                "Event received."
            );
            if !sg_data.is_scheduled.replace(true) {
                self.stratum_queues[sg_data.stratum].push_back(sg_id);
                count += 1;
            }
            if is_external {
                // Next tick is triggered if we are at the start of the next tick (`!self.events_receved_tick`).
                // Or if the stratum is in the next tick.
                if !self.events_received_tick || sg_data.stratum < self.context.current_stratum {
                    tracing::trace!(
                        current_stratum = self.context.current_stratum,
                        sg_stratum = sg_data.stratum,
                        "External event, setting `can_start_tick = true`."
                    );
                    self.can_start_tick = true;
                }
                break;
            }
        }
        self.events_received_tick = true;

        // Enqueue any other immediate events.
        let extra_count = self.try_recv_events();
        Some(count + extra_count)
    }

    /// Schedules a subgraph to be run. See also: [`Context::schedule_subgraph`].
    pub fn schedule_subgraph(&mut self, sg_id: SubgraphId) -> bool {
        let sg_data = &self.subgraphs[sg_id.0];
        let already_scheduled = sg_data.is_scheduled.replace(true);
        if !already_scheduled {
            self.stratum_queues[sg_data.stratum].push_back(sg_id);
            true
        } else {
            false
        }
    }

    /// Adds a new compiled subgraph with the specified inputs and outputs in stratum 0.
    pub fn add_subgraph<Name, R, W, F>(
        &mut self,
        name: Name,
        recv_ports: R,
        send_ports: W,
        subgraph: F,
    ) -> SubgraphId
    where
        Name: Into<Cow<'static, str>>,
        R: 'static + PortList<RECV>,
        W: 'static + PortList<SEND>,
        F: 'static + for<'ctx> FnMut(&'ctx mut Context, R::Ctx<'ctx>, W::Ctx<'ctx>),
    {
        self.add_subgraph_stratified(name, 0, recv_ports, send_ports, false, subgraph)
    }

    /// Adds a new compiled subgraph with the specified inputs, outputs, and stratum number.
    ///
    /// TODO(mingwei): add example in doc.
    pub fn add_subgraph_stratified<Name, R, W, F>(
        &mut self,
        name: Name,
        stratum: usize,
        recv_ports: R,
        send_ports: W,
        laziness: bool,
        mut subgraph: F,
    ) -> SubgraphId
    where
        Name: Into<Cow<'static, str>>,
        R: 'static + PortList<RECV>,
        W: 'static + PortList<SEND>,
        F: 'a + for<'ctx> FnMut(&'ctx mut Context, R::Ctx<'ctx>, W::Ctx<'ctx>),
    {
        let sg_id = SubgraphId(self.subgraphs.len());

        let (mut subgraph_preds, mut subgraph_succs) = Default::default();
        recv_ports.set_graph_meta(&mut *self.handoffs, &mut subgraph_preds, sg_id, true);
        send_ports.set_graph_meta(&mut *self.handoffs, &mut subgraph_succs, sg_id, false);

        let subgraph = move |context: &mut Context, handoffs: &mut Vec<HandoffData>| {
            let recv = recv_ports.make_ctx(&*handoffs);
            let send = send_ports.make_ctx(&*handoffs);
            (subgraph)(context, recv, send);
        };
        self.subgraphs.push(SubgraphData::new(
            name.into(),
            stratum,
            subgraph,
            subgraph_preds,
            subgraph_succs,
            true,
            laziness,
        ));
        self.init_stratum(stratum);
        self.stratum_queues[stratum].push_back(sg_id);

        sg_id
    }

    /// Adds a new compiled subgraph with a variable number of inputs and outputs of the same respective handoff types.
    pub fn add_subgraph_n_m<Name, R, W, F>(
        &mut self,
        name: Name,
        recv_ports: Vec<RecvPort<R>>,
        send_ports: Vec<SendPort<W>>,
        subgraph: F,
    ) -> SubgraphId
    where
        Name: Into<Cow<'static, str>>,
        R: 'static + Handoff,
        W: 'static + Handoff,
        F: 'static
            + for<'ctx> FnMut(&'ctx mut Context, &'ctx [&'ctx RecvCtx<R>], &'ctx [&'ctx SendCtx<W>]),
    {
        self.add_subgraph_stratified_n_m(name, 0, recv_ports, send_ports, subgraph)
    }

    /// Adds a new compiled subgraph with a variable number of inputs and outputs of the same respective handoff types.
    pub fn add_subgraph_stratified_n_m<Name, R, W, F>(
        &mut self,
        name: Name,
        stratum: usize,
        recv_ports: Vec<RecvPort<R>>,
        send_ports: Vec<SendPort<W>>,
        mut subgraph: F,
    ) -> SubgraphId
    where
        Name: Into<Cow<'static, str>>,
        R: 'static + Handoff,
        W: 'static + Handoff,
        F: 'static
            + for<'ctx> FnMut(&'ctx mut Context, &'ctx [&'ctx RecvCtx<R>], &'ctx [&'ctx SendCtx<W>]),
    {
        let sg_id = SubgraphId(self.subgraphs.len());

        let subgraph_preds = recv_ports.iter().map(|port| port.handoff_id).collect();
        let subgraph_succs = send_ports.iter().map(|port| port.handoff_id).collect();

        for recv_port in recv_ports.iter() {
            self.handoffs[recv_port.handoff_id.0].succs.push(sg_id);
        }
        for send_port in send_ports.iter() {
            self.handoffs[send_port.handoff_id.0].preds.push(sg_id);
        }

        let subgraph = move |context: &mut Context, handoffs: &mut Vec<HandoffData>| {
            let recvs: Vec<&RecvCtx<R>> = recv_ports
                .iter()
                .map(|hid| hid.handoff_id)
                .map(|hid| handoffs.get(hid.0).unwrap())
                .map(|h_data| {
                    h_data
                        .handoff
                        .any_ref()
                        .downcast_ref()
                        .expect("Attempted to cast handoff to wrong type.")
                })
                .map(RefCast::ref_cast)
                .collect();

            let sends: Vec<&SendCtx<W>> = send_ports
                .iter()
                .map(|hid| hid.handoff_id)
                .map(|hid| handoffs.get(hid.0).unwrap())
                .map(|h_data| {
                    h_data
                        .handoff
                        .any_ref()
                        .downcast_ref()
                        .expect("Attempted to cast handoff to wrong type.")
                })
                .map(RefCast::ref_cast)
                .collect();

            (subgraph)(context, &recvs, &sends)
        };
        self.subgraphs.push(SubgraphData::new(
            name.into(),
            stratum,
            subgraph,
            subgraph_preds,
            subgraph_succs,
            true,
            false,
        ));
        self.init_stratum(stratum);
        self.stratum_queues[stratum].push_back(sg_id);

        sg_id
    }

    /// Makes sure stratum STRATUM is initialized.
    fn init_stratum(&mut self, stratum: usize) {
        if self.stratum_queues.len() <= stratum {
            self.stratum_queues
                .resize_with(stratum + 1, Default::default);
        }
    }

    /// Creates a handoff edge and returns the corresponding send and receive ports.
    pub fn make_edge<Name, H>(&mut self, name: Name) -> (SendPort<H>, RecvPort<H>)
    where
        Name: Into<Cow<'static, str>>,
        H: 'static + Handoff,
    {
        let handoff_id = HandoffId(self.handoffs.len());

        // Create and insert handoff.
        let handoff = H::default();
        self.handoffs
            .push(HandoffData::new(name.into(), handoff, handoff_id));

        // Make ports.
        let input_port = SendPort {
            handoff_id,
            _marker: PhantomData,
        };
        let output_port = RecvPort {
            handoff_id,
            _marker: PhantomData,
        };
        (input_port, output_port)
    }

    /// Adds referenceable state into the `Hydroflow` instance. Returns a state handle which can be
    /// used externally or by operators to access the state.
    ///
    /// This is part of the "state API".
    pub fn add_state<T>(&mut self, state: T) -> StateHandle<T>
    where
        T: Any,
    {
        self.context.add_state(state)
    }

    /// Gets a exclusive (mut) ref to the internal context, setting the subgraph ID.
    pub fn context_mut(&mut self, sg_id: SubgraphId) -> &mut Context {
        self.context.subgraph_id = sg_id;
        &mut self.context
    }
}

impl<'a> Hydroflow<'a> {
    /// Alias for [`Context::request_task`].
    pub fn request_task<Fut>(&mut self, future: Fut)
    where
        Fut: Future<Output = ()> + 'static,
    {
        self.context.request_task(future);
    }

    /// Alias for [`Context::abort_tasks`].
    pub fn abort_tasks(&mut self) {
        self.context.abort_tasks()
    }

    /// Alias for [`Context::join_tasks`].
    pub fn join_tasks(&mut self) -> impl '_ + Future {
        self.context.join_tasks()
    }
}

impl<'a> Drop for Hydroflow<'a> {
    fn drop(&mut self) {
        self.abort_tasks();
    }
}

/// A handoff and its input and output [SubgraphId]s.
///
/// Internal use: used to track the hydroflow graph structure.
///
/// TODO(mingwei): restructure `PortList` so this can be crate-private.
#[doc(hidden)]
pub struct HandoffData {
    /// A friendly name for diagnostics.
    #[allow(dead_code)] // TODO(mingwei): remove attr once used.
    pub(super) name: Cow<'static, str>,
    /// Crate-visible to crate for `handoff_list` internals.
    pub(super) handoff: Box<dyn HandoffMeta>,
    /// Preceeding subgraphs (including the send side of a teeing handoff).
    pub(super) preds: SmallVec<[SubgraphId; 1]>,
    /// Successor subgraphs (including recv sides of teeing handoffs).
    pub(super) succs: SmallVec<[SubgraphId; 1]>,

    /// Predecessor handoffs, used by teeing handoffs.
    /// Should be `self` on any teeing send sides (input).
    /// Should be the send `HandoffId` if this is teeing recv side (output).
    /// Should be just `self`'s `HandoffId` on other handoffs.
    /// This field is only used in initialization.
    pub(super) pred_handoffs: Vec<HandoffId>,
    /// Successor handoffs, used by teeing handoffs.
    /// Should be a list of outputs on the teeing send side (input).
    /// Should be `self` on any teeing recv sides (outputs).
    /// Should be just `self`'s `HandoffId` on other handoffs.
    /// This field is only used in initialization.
    pub(super) succ_handoffs: Vec<HandoffId>,
}
impl std::fmt::Debug for HandoffData {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
        f.debug_struct("HandoffData")
            .field("preds", &self.preds)
            .field("succs", &self.succs)
            .finish_non_exhaustive()
    }
}
impl HandoffData {
    /// New with `pred_handoffs` and `succ_handoffs` set to its own [`HandoffId`]: `vec![hoff_id]`.
    pub fn new(
        name: Cow<'static, str>,
        handoff: impl 'static + HandoffMeta,
        hoff_id: HandoffId,
    ) -> Self {
        let (preds, succs) = Default::default();
        Self {
            name,
            handoff: Box::new(handoff),
            preds,
            succs,
            pred_handoffs: vec![hoff_id],
            succ_handoffs: vec![hoff_id],
        }
    }
}

/// A subgraph along with its predecessor and successor [SubgraphId]s.
///
/// Used internally by the [Hydroflow] struct to represent the dataflow graph
/// structure and scheduled state.
pub(super) struct SubgraphData<'a> {
    /// A friendly name for diagnostics.
    #[allow(dead_code)] // TODO(mingwei): remove attr once used.
    pub(super) name: Cow<'static, str>,
    /// This subgraph's stratum number.
    pub(super) stratum: usize,
    /// The actual execution code of the subgraph.
    subgraph: Box<dyn Subgraph + 'a>,
    #[allow(dead_code)]
    preds: Vec<HandoffId>,
    succs: Vec<HandoffId>,

    /// If this subgraph is scheduled in [`Hydroflow::stratum_queues`].
    /// [`Cell`] allows modifying this field when iterating `Self::preds` or
    /// `Self::succs`, as all `SubgraphData` are owned by the same vec
    /// `Hydroflow::subgraphs`.
    is_scheduled: Cell<bool>,

    /// Keep track of the last tick that this subgraph was run in
    last_tick_run_in: Option<usize>,

    /// If this subgraph is marked as lazy, then sending data back to a lower stratum does not trigger a new tick to be run.
    is_lazy: bool,
}
impl<'a> SubgraphData<'a> {
    pub fn new(
        name: Cow<'static, str>,
        stratum: usize,
        subgraph: impl Subgraph + 'a,
        preds: Vec<HandoffId>,
        succs: Vec<HandoffId>,
        is_scheduled: bool,
        laziness: bool,
    ) -> Self {
        Self {
            name,
            stratum,
            subgraph: Box::new(subgraph),
            preds,
            succs,
            is_scheduled: Cell::new(is_scheduled),
            last_tick_run_in: None,
            is_lazy: laziness,
        }
    }
}

/// Internal struct containing a pointer to [`Hydroflow`]-owned state.
pub(crate) struct StateData {
    pub state: Box<dyn Any>,
}